3n^2+7n+3=0

Simple and best practice solution for 3n^2+7n+3=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3n^2+7n+3=0 equation:


Simplifying
3n2 + 7n + 3 = 0

Reorder the terms:
3 + 7n + 3n2 = 0

Solving
3 + 7n + 3n2 = 0

Solving for variable 'n'.

Begin completing the square.  Divide all terms by
3 the coefficient of the squared term: 

Divide each side by '3'.
1 + 2.333333333n + n2 = 0

Move the constant term to the right:

Add '-1' to each side of the equation.
1 + 2.333333333n + -1 + n2 = 0 + -1

Reorder the terms:
1 + -1 + 2.333333333n + n2 = 0 + -1

Combine like terms: 1 + -1 = 0
0 + 2.333333333n + n2 = 0 + -1
2.333333333n + n2 = 0 + -1

Combine like terms: 0 + -1 = -1
2.333333333n + n2 = -1

The n term is 2.333333333n.  Take half its coefficient (1.166666667).
Square it (1.361111112) and add it to both sides.

Add '1.361111112' to each side of the equation.
2.333333333n + 1.361111112 + n2 = -1 + 1.361111112

Reorder the terms:
1.361111112 + 2.333333333n + n2 = -1 + 1.361111112

Combine like terms: -1 + 1.361111112 = 0.361111112
1.361111112 + 2.333333333n + n2 = 0.361111112

Factor a perfect square on the left side:
(n + 1.166666667)(n + 1.166666667) = 0.361111112

Calculate the square root of the right side: 0.600925213

Break this problem into two subproblems by setting 
(n + 1.166666667) equal to 0.600925213 and -0.600925213.

Subproblem 1

n + 1.166666667 = 0.600925213 Simplifying n + 1.166666667 = 0.600925213 Reorder the terms: 1.166666667 + n = 0.600925213 Solving 1.166666667 + n = 0.600925213 Solving for variable 'n'. Move all terms containing n to the left, all other terms to the right. Add '-1.166666667' to each side of the equation. 1.166666667 + -1.166666667 + n = 0.600925213 + -1.166666667 Combine like terms: 1.166666667 + -1.166666667 = 0.000000000 0.000000000 + n = 0.600925213 + -1.166666667 n = 0.600925213 + -1.166666667 Combine like terms: 0.600925213 + -1.166666667 = -0.565741454 n = -0.565741454 Simplifying n = -0.565741454

Subproblem 2

n + 1.166666667 = -0.600925213 Simplifying n + 1.166666667 = -0.600925213 Reorder the terms: 1.166666667 + n = -0.600925213 Solving 1.166666667 + n = -0.600925213 Solving for variable 'n'. Move all terms containing n to the left, all other terms to the right. Add '-1.166666667' to each side of the equation. 1.166666667 + -1.166666667 + n = -0.600925213 + -1.166666667 Combine like terms: 1.166666667 + -1.166666667 = 0.000000000 0.000000000 + n = -0.600925213 + -1.166666667 n = -0.600925213 + -1.166666667 Combine like terms: -0.600925213 + -1.166666667 = -1.76759188 n = -1.76759188 Simplifying n = -1.76759188

Solution

The solution to the problem is based on the solutions from the subproblems. n = {-0.565741454, -1.76759188}

See similar equations:

| A=qm+qforp | | 1/2=5p-8 | | z/5=12 | | 1.2s+3.68=47.9 | | 16b-1-4b= | | 5(5+20)=2x(2x+2x) | | 9=(6j-18)/4 | | 10=15n | | 1/2(8w-6)=46.9 | | 9x-5y=-2 | | 3x+2=4x+10 | | -9yy=13 | | .02-.02(x+2)=-.02(3-x) | | x/5-12=8 | | -9y=13 | | 2x^2-9=5x | | 2x^2-8=6x | | 3/2a-8=11 | | 125=8x^2 | | .03x-.02=.07 | | (x^3-3x^2-5x+20)+(4x^3+10x^2-x+30)=0 | | 2b+9=18 | | .003x-.02=.07 | | 2000+80b=3040 | | 4(x+1)+2(x+6)=0 | | 5x+2x-=18 | | 2k=-22 | | x+5x=-18 | | 4(x+1)+2(x+6)=6 | | 14x^8y^3/-21x^5y^12=0 | | -k=30 | | 4/2x=5/x+6 |

Equations solver categories